Rigorous uniform approximation of D-finite functions using Chebyshev expansions
نویسندگان
چکیده
منابع مشابه
Rigorous uniform approximation of D-finite functions using Chebyshev expansions
A wide range of numerical methods exists for computing polynomial approximations of solutions of ordinary differential equations based on Chebyshev series expansions or Chebyshev interpolation polynomials. We consider the application of such methods in the context of rigorous computing (where we need guarantees on the accuracy of the result), and from the complexity point of view. It is well-kn...
متن کاملApproximation of Analytic Functions by Chebyshev Functions
and Applied Analysis 3 where we refer to 1.4 for the am’s and we follow the convention ∏m−1 j m · · · 1. We can easily check that cm’s satisfy the following relation: m 2 m 1 cm 2 − ( m2 − n2 ) cm am 2.2 for any m ∈ {0, 1, 2, . . .}. Theorem 2.1. Assume that n is a positive integer and the radius of convergence of the power series ∑∞ m 0 amx m is ρ > 0. Let ρ0 min{1, ρ}. Then, every solution y ...
متن کاملRigorous Multiple-Precision Evaluation of D-Finite Functions in SageMath
We present a new open source implementation in the SageMath computer algebra system of algorithms for the numerical solution of linear ODEs with polynomial coefficients. Our code supports regular singular connection problems and provides rigorous error bounds. Extended abstract for a talk given at the 5th International Congress on Mathematical Software (ICMS 2016). Accepted for publication in t...
متن کاملFuzzy Best Simultaneous Approximation of a Finite Numbers of Functions
Fuzzy best simultaneous approximation of a finite number of functions is considered. For this purpose, a fuzzy norm on $Cleft (X, Y right )$ and its fuzzy dual space and also the set of subgradients of a fuzzy norm are introduced. Necessary case of a proved theorem about characterization of simultaneous approximation will be extended to the fuzzy case.
متن کاملChebyshev Approximation by Exponentials on Finite Subsets
This paper is concerned with Chebyshev approximation by exponentials on finite subsets. We take into account that varisolvency does not hold for exponentials in general. A bound for the derivatives of exponentials is established and convergence of the solutions for the discrete problems is proved in the topology of compact convergence on the open interval.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2016
ISSN: 0025-5718,1088-6842
DOI: 10.1090/mcom/3135